Trillium ArchitectsAt boarding school, a house is more than just a home. It’s also a place to host team dinners and advisee feeds—and for most faculty, it’s just a hop, skip and a jump from the classroom or athletic field.Roughly a third of the Taft faculty live in dormitory apartments, but after a few years of late night check-ins and the occasional fire drill, many faculty (frequently with growing families) move into nearby campus housing. The school now owns about 35 homes (some are two-family) in the neighborhood, most of them adjacent to the playing fields.Last summer the school renovated the Rectory building (acquired with Woodward Chapel) and this summer plans to build a state-of-the-art green home designed by Architect Elizabeth DiSalvo, Trillium Architects, a leader in the field of residential green building, thanks to a gift to support the school's commitment to faculty housing and environmental stewardship."This project perfectly embodies two key strategic priorities," says Headmaster Willy MacMullen '78, "improved faculty housing and a commitment to environmental stewardship. We are so lucky that we received a generous grant from a Taft family to make this possible."Current plans are for a 2,400 square foot, two-story home with two-car garage, 3 bedrooms and 2.5 baths. A new foundation will be located further back from the road and oriented to optimize use of passive and active solar energy (see box below for more details). The school had originally hoped to renovate the existing home on the site, but discovered numerous problems and began to consider the benefits of building a new home that could be at once historically sensitive to the neighborhood and also a model of environmental sustainability."What Taft is doing with the plan for this new home," says DiSalvo, "is something I call 'walking forward into the past.' I got this term from a Native American in New Mexico. Basically it means using the technological advances we have to day to revive the intentions of the past. In housing that means getting back to nature and building intelligently based on what nature tells us and gives us. For example, the sun warms us naturally, therefore, it makes sense to turn a house toward the sun to let the low winter sun in and provide overhangs to shade us from the hot summer sun. This sort of building was obvious when people lived in tune with nature and the seasons. Modern technologies have brought us away from that knowledge. Why not use the wisdom of the past to form our houses and then add the significant benefits of modern technology to make a house that can be close to net zero and last for generations to come. And when its long life cycle is done, it can naturally biodegrade and become part of the earth again. This is what Taft is doing with the house at 59 North Street."Before proceeding, Taft consulted with the town historian, who discovered no architectural or historical significance to the home, and then, following all permitting requirements, presented the design to the Watertown Historic District Commission, which approved the new plan unanimously.Still, the proposed removal of the home stirred some controversy after the public hearing.“Taft followed all the required procedures and is tremendously excited about building a home that will be beautiful, efficient and responsible,” says Headmaster Willy MacMullen ’78."The vote of the Commission was unanimous," wrote Jean C. King, chair of the Watertown Historic District Commission. "The Commission consulted with Mr. John Pillis, the town historian, during its deliberations and Mr. Pillis agreed with our decision."Taft has not razed any homes in the Historic District since the district’s creation. The Annex was the last known structure removed, now 50 years ago—for fire safety concerns.The home at 59 North Street bears little resemblance to its 19th-century original. What is visible is likely a 1920s creation. Not much remains of the home's historic character after repeated additions and renovations."In every era of history, houses have been built to higher and lower quality levels," says Di Salvo. "Some are truly gems, fantastic examples of the design, technologies and riches of their age. Others are utilitarian structures that are erected because someone needs a quick and inexpensive shelter. Should we save everything ever built more than 100 years ago? Not necessarily. If we fast forward 100 years would you expect our grandchildren to save a poorly built '70s ranch or a very poorly built '80s McMansion simply because they are old?" "The home, while old, has been renovated and added on to over the years," says Business Manager Gil Thornfeldt, "and the current house could not feasibly be renovated to provide a safe, environmentally conscious home for a family."Taft School actively seeks to preserve the town’s historic character and has demonstrated that commitment through the preservation of the old town library (now Walker Hall), Christ Church (Woodward Chapel)—both of which are still used to host events that are open to the public—as well as the Rectory and another home on North Street that was renovated several years ago. The Academy Building and the Woodward Chapel Annex are both scheduled for renovations this year. A rear view of the current structure at 59 North Street, which shows multiple additions to the original structure.
Green Features
The goal of a HERS (Home Energy Rating System) Score less than 30, optimally less than 20. High R-Value with very low air infiltration and little thermal bridging make the heating and cooling of the house incredibly efficient, requiring very little fuel.
Building Envelope:
Walls: R45 (code requires R21) double stud walls filled with 12" dense-packed cellulose
Roof: R65 (code requires R38) underside sheathing ‘flashed’ with closed-cell foam insulation (approx. 3” = R20) and filled with dense-packed cellulose approx. 12" thick (R 45)
Basement: R20 (code requires R10) 3" closed-cell foam with drywall over stud framing
Slab: R28 (code requires R10) Slab will have 4" EPS foam below it.
Windows: R5 / U.2 Min (energy star suggests and code requires R3.5/ U.28)
Air Infiltration Goal of 1.0 ACH@50 Pascals airflow Maximum
HVAC Equipment
-Super high-efficiency Ductless Mini-splits (2) for heating and cooling
-ERV (Energy Recovery Ventilator) to re-coup heat and moisture from outgoing air
-High Efficiency Gas (or propane) on demand Hot Water Heater with Solar Thermal Back up
-High efficiency, super low emission wood stove for power failures or extreme cold spells.
Electrical
-Photovoltaic solar panels for powering lights, outlets, etc., and Minisplit heating and cooling system with possible battery backup.
-Ceiling Fans for circulation of air in each bedroom and major living space
-LED Lights throughout
-Energy Star rated Appliances
Water
-Collect all water from the roof in underground holding tank connected to a drip irrigation system for the adjacent school garden.
Materials
-Painted cedar shingle exterior, applied as "rain screen," an old-fashioned method (rarely practiced now) that allows for a continuous airspace behind the shingles to keep them dry yearround. The ability to get wet and then dry makes the shingles and the paint job last a very long time.
-Strive for natural and sustainable materials for the interior and salvage materials, like wood flooring, from the existing home where possible
Ground Cover and Plantings
-Water-permeable drive and walkways of stone or gravel to reduce runoff
-Native plantings that require no active watering